Exercise 67

Find the equation of the line that passes through the following points: $(a, 0)$ and (c, d)

Solution

The general equation for a line is

$$
Y=M X+B .
$$

The first point says that when the input is $X=a$, the output is $Y=0$.

$$
0=M(a)+B
$$

The second point says that when the input is $X=c$, the output is $Y=d$.

$$
d=M(c)+B
$$

This is a system of two equations for two unknowns that can be solved for.

$$
\left\{\begin{array}{l}
a M+B=0 \\
c M+B=d
\end{array}\right.
$$

Subtract the respective sides of these equations to eliminate B.

$$
a M-c M=0-d \quad \rightarrow \quad(a-c) M=-d \quad \rightarrow \quad M=\frac{-d}{a-c}
$$

Multiply both sides of the first equation by $1 / a$, multiply both sides of the second equation by $-1 / c$,

$$
\left\{\begin{array}{c}
M+\frac{B}{a}=0 \\
-M-\frac{B}{c}=-\frac{d}{c}
\end{array}\right.
$$

and add the respective sides to eliminate M.

$$
\frac{B}{a}+\left(-\frac{B}{c}\right)=0+\left(-\frac{d}{c}\right) \quad \rightarrow \quad\left(\frac{1}{a}-\frac{1}{c}\right) B=-\frac{d}{c} \quad \rightarrow \quad \frac{c-a}{a c} B=-\frac{d}{c} \quad \rightarrow \quad B=-\frac{a d}{c-a}
$$

Now that M and B are solved for, the equation of the line is known.

$$
Y=\frac{-d}{a-c} X-\frac{a d}{c-a}
$$

